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ABSTRACT

In learning-based approaches to image compression, codecs
are developed by optimizing a computational model to mini-
mize a rate-distortion objective. Currently, the most effective
learned image codecs take the form of an entropy-constrained
autoencoder with an entropy model that uses both forward
and backward adaptation. Forward adaptation makes use of
side information and can be efficiently integrated into a deep
neural network. In contrast, backward adaptation typically
makes predictions based on the causal context of each sym-
bol, which requires serial processing that prevents efficient
GPU / TPU utilization. We introduce two enhancements,
channel-conditioning and latent residual prediction, that lead
to network architectures with better rate-distortion perfor-
mance than existing context-adaptive models while minimiz-
ing serial processing. Empirically, we see an average rate
savings of 6.7% on the Kodak image set and 11.4% on the
Tecnick image set compared to a context-adaptive baseline
model. At low bit rates, where the improvements are most
effective, our model saves up to 18% over the baseline and
outperforms hand-engineered codecs like BPG by up to 25%.

Index Terms— Image Compression, Neural Networks,
Adaptive Entropy Modeling

1. INTRODUCTION

Most recent research in learned image compression uses deep
neural networks, and a wide range of model architectures
have been explored including recurrent networks [1]—[4] and
autoencoders with an entropy-constrained bottleneck [5]—
[16]. In models that use an autoencoder, an analysis network
transforms pixels into a quantized latent representation suit-
able for compression by standard entropy coding algorithms,
while a synthesis network is jointly optimized to transform
the latent representation back into pixels.

To date, the most effective models make use of both for-
ward and backward-adaptive components to improve the pre-
dictive power of the entropy model, which leads to higher
compression rates without increasing distortion. Forward-
adaption typically makes use of side information, for example
in the form of local histograms over the quantized latent rep-
resentation [9] or a learned hyperprior [10]. The hyperprior

approach is particularly popular since it can easily be inte-
grated into an end-to-end optimized network and allows for
efficient encoding and decoding.

Backward-adaptation, on the other hand, typically incor-
porates predictions from the causal context of each symbol,
i.e. neighboring symbols above and to the left of the cur-
rent symbol as well as symbols in previously decoded chan-
nels [11]-[14]. In such context-adaptive models, encoding
can still be performed efficiently using masked convolution,
which will run in parallel across the entire latent tensor on a
GPU or TPU [17]. Decoding, however, is inherently serial,
and thus does not effectively utilize massively parallel hard-
ware.

Our goal is to develop an image compression architecture
capable of matching the rate-distortion (RD) performance of
a context-adaptive model while minimizing serial processing
that can lead to slow decoding times. Toward this goal, we ex-
plore two architectural enhancements: channel-conditioning
(CC) and latent residual prediction (LRP). In addition, we
show how training synthesis transforms with rounded latent
values interacts positively with CC and LRP to further boost
RD performance.

The combined effect of these improvements is a highly
parallelizable architecture that outperforms recently proposed
context-adaptive models [12]-[14] by 6.7% on Kodak [18]]
and 11.4% on the Tecnick image set [19]. We see even larger
gains compared to standard codecs and learning-based mod-
els that do not use context (see Figures 2] and [3). The coding
improvements provided by CC and LRP are most effective
at low bit rates where our model saves more than 16% com-
pared to the context-adaptive baseline and as much as 25%
relative to BPG [20]. The following three sections describe
channel-conditioning, latent residual prediction, and round-
based training. A detailed analysis of the empirical results is
presented in Section [5]and discussed in Section [6}

2. CHANNEL-CONDITIONAL ENTROPY MODELS

Our model builds on the hyperprior architecture introduced
in [10]. This model learns to generate an image-dependent
hyper-latent tensor that is compressed and transmitted as side
information. It jointly learns to transform this tensor into the
entropy parameters used to compress the symbols that repre-
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Fig. 1: This data-flow diagram shows the architecture of our compression model with latent residual prediction (LRP) and two
slices for channel-conditioning (CC). Tan blocks represent data tensors, blue represents transforms comprised of convolutional
layers, green is for basic arithmetic operations, and red represents entropy coding. In this model, an input image (x) is trans-
formed and quantized before the latent representation (y) is split along the channel dimension. The first slice (y;) is compressed
using a Gaussian entropy model conditioned solely on the hyperprior (green arrows from ' and ¢”), while the entropy model
for the second slice (ys) is conditioned on both the hyperprior and the decoded symbols in the first slice (blue arrows from ;).
After range coding (enc and dec blocks), quantization error is reduced by adding the predicted residual (LRP; and LRP,),
which is conditioned on the hyperprior via y’. Finally, the decoded slices are concatenated to form 7 and transformed into the

final reconstructed image ().

sents the input image (see the Hyperprior block at the right
of Figure [I). Hyperprior models typically use a conditional
Gaussian model parameterized by scale [10] or both scale
and mean, and the most effective models combine informa-
tion from the hyperprior (forward-adaptation) with a spatially
autoregressive model (backward-adaptation) before predict-
ing the entropy parameters y and o [[12[]-[|14]].

Conditioning on the causal context allows for better mod-
eling of spatial correlation and is commonly used in standard
image codecs [20]-[22] and for intra-frame prediction in
video codecs [23]|-[25]. In a learning-based codec, the model
must estimate the parameters of a spatially autoregressive
(AR) model. This approach is effective but requires running
the AR model sequentially to decode each symbol, which can
slow down decoding times on GPUs and TPUs compared to
architectures that better utilize the massively parallel process-
ing abilities of such hardware. For this reason, we explore
channel-conditional (CC) models, which split the latent ten-
sor along the channel dimension into N roughly equal-size
slices, and conditions the entropy parameters for each slice
on previously decoded slices.

Figure [T| provides a high-level overview of this architec-
ture where the blue arrows show how y, (the second slice)
is conditioned on g (the first slice). In a model with more
splits, the third slice (y3) would be conditioned on the hyper-
prior along with both ¢; and 9o, efc.

We can interpret CC models as autoregressive along the
channel dimension rather than the spatial dimensions. Al-
though this structure also introduces some serial processing
(slice y; can only be decoded after slices [y; . ..y;—1]), we
typically use relatively few slices due to diminishing bene-
fits to RD performance (see Figure ). Note that in a model
with IV slices, each slice contains W x H X % values that
can be processed in parallel (where W, H, and C' correspond

to the width, height and number of channels, respectively).
Contrast with a spatially autoregressive model where a naive
implementation requires W x H sequential steps with only
C values computed during each run. A more careful imple-
mentation using wavefront processing adds some paralleliza-
tion [26] but still far less than channel-conditioning.

3. LATENT RESIDUAL PREDICTION

Autoencoder models learn to transform pixel values () into
real-valued latents (y) that are quantized before they are loss-
lessly compressed. This process inevitably leads to a residual
error in the latent space (r = y — Q[y]) that manifests as ex-
tra distortion when Q[y] is transformed back into the pixel
domain ().

Latent residual prediction attempts to reduce this quanti-
zation error by predicting the residual based on the hyperprior
and any previously decoded slices. The predicted residual
is added to the quantized latents slice-by-slice, which allows
LRP to improve results both by decreasing distortion and by
decreasing entropy since the entropy parameters used to code
later slices are conditioned on previous ones that include LRP.

Previous approaches for augmenting the input to the
synthesis transform either re-used the mean prediction di-
rectly [15] or used dilated convolution to provide additional
features based on a larger receptive field [16]]. In both cases,
however, the extra features were concatenated with the la-
tent tensor, which increases computation, and neither used
channel-conditioning, which means that potential improve-
ments could only affect distortion.

4. TRAINING WITH ROUNDED LATENT VALUES

All compression models trained using gradient-based opti-
mization are hindered by quantization, which yields gradi-



o
O 38
=
o
Z36
a
34 —— CC(10 splits) + LRP
—— Minnen (2018) Context + Hyperprior
32 —— Lee (2019) Context-Adaptive
—— BPG (4:4:4)
30 JPEG2000 (OpenJPEG)
WebP
—— JPEG (4:2:0)
9.0 05 10 255 30

15 2.0
Bits per pixel (BPP)

Fig. 2: Models using channel-conditioning and latent residual
prediction outperform both the learning-based baselines and
standard codecs on the Kodak image set.

ents that are either zero or infinite at all values. Typically,
researchers avoid this problem by either training with uni-
form noise, which simulates “noisy quantization” without de-
stroying the gradient [6], [[10]], [12]-[14]], [27], [28]], or they
use straight-through gradients where rounding is applied but
the true gradient function is replaced with the identity func-
tion [5]].

Although space constraints preclude a full report on the
effects of different training methods, we empirically found
that a mixed approach improves RD performance. Our base-
line models replace quantization with uniform noise during
training: Q[y] = y-+U(—3, 1). The mixed approach uses the
same uniform noise for learning entropy models but replaces
the noisy tensor with a rounded one whenever the quantized
tensor is passed to a synthesis transform. Looking at Fig-
ure[I] the difference is essentially whether the quantized ten-
sor is flowing to the right (add noise) or left (round with
straight-through gradients). We experimented with using the
rounding-based method everywhere, but this approach per-
formed worse than the noise-based baseline.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the effects of using CC, LRP, and
round-based training in a learned image codec. Figure [2]com-
pares RD curves averaged over the Kodak image set [18].
The graph shows that our full model (10 CC slices + LRP +
round-based training) outperforms all of the standard codecs
(BPG, JPEG2000, WebP, and JPEG) as well as learning-based
codecs that combine spatial context with a hyperprior [13],
[14]. To improve clarity, earlier learning-based methods, in-
cluding [2]-[12]], are not shown in Figure 2] but all of these
methods have worse RD performance than both BPG and our
CC + LRP model.

Additional results are shown in Figure [3] which plots the
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Fig. 3: Each curve shows the rate savings relative to BPG
averaged over the Kodak image set. Our largest model (10
CC splits + LRP + round-based training) outperforms BPG
by 10% at high bit rates and up to 25% at low bit rates.

relative rate savings compared to BPG at different quality lev-
els. Larger values correspond to larger relative rate savings
and thus better compression. This graph generalizes a Bjgn-
tegaard Delta (BD) chart [29] by plotting rate savings as a
function of quality, rather than only presenting the average
savings. Our largest model, which uses 10 CC slices, pro-
vides a significant rate savings over BPG, ranging from 10%
at higher quality levels up to 25% at the lowest. This cor-
responds to an average BD rate savings of 13.9% over BPG
and 6.7% over the context-adaptive baseline [[13[]. The follow-
ing sections analyze how each proposed improvements con-
tributes to the final result.

5.1. Number of Channel-Conditional Slices

Figure 4| shows the average rate savings as the number of
channel-conditioning slices increases. When we split the la-
tent tensor into more slices, there are more opportunities to
model the dependencies between channels, which reduces en-
tropy. This benefit, however, comes at the cost of extra com-
putation, and we also see diminishing returns as the number
of slices increases.

5.2. Latent Residual Prediction

Figure [5] shows the effect of LRP for different numbers of
channel-conditioning splits. Each curve compares a model
trained with LRP to an identical model without LRP by plot-
ting the relative rate savings when LRP is used.

The figure shows several effects. First, LRP has almost
no benefit for models that do not use channel-conditioning,
which we can see because the blue “CC(0 splits)” curve is
always close to zero. Second, regardless of the number of CC
splits, LRP slightly reduces RD performance at high bit rates.
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Fig. 4: RD performance increases with additional channel-
conditional splits. The graph shows BD rate savings for mod-
els that are identical except for the number of CC splits. Note
that these models were trained without LRP to isolate the ef-
fect of channel-conditioning.

At low bit rates, however, the benefit of LRP increases with
the number of CC slices and improves compression by more
than 6% for the model with 10 splits.

5.3. Rounding-based Optimization

Figure [6] shows the impact of mixed training with noise and
round-based handling of quantized tensors as described in
Section[d] The figure shows results for two CC models (zero
and five splits) and plots both variants with and without LRP.
Each curve shows the rate savings relative to an identical
model optimized using uniform-noise everywhere, which
means that the rate savings are due entirely to the change in
how quantization is handled. We see the same trend in all
cases: the benefit is minimal at higher quality levels but be-
comes significant at lower bit rates. For the “CC (5 splits) +
LRP” model, the savings exceed 15% at the lowest bit rates.

6. DISCUSSION

From a theoretical perspective, the positive results from both
CC and LRP are somewhat surprising. Ideally, the opti-
mization process should expand the range of each channel to
balance the rate-distortion trade-off, which means that using
additional bits in the hyperprior to drive LRP would not be
helpful. Essentially, channels that significantly reduce dis-
tortion would use more symbols, which can be interpreted
as finer precision, e.g. consider a channel that uses values
[-1,0,1] vs. one that uses [—100,—99,...,99,100] and
is scaled by ﬁ in the next convolutional layer. Since the
most useful channels should already have higher effective
granularity, there is less opportunity for LRP to provide a
benefit.

Similarly, the analysis transform would ideally learn to
map pixels into a latent space such that each channel is con-
ditionally independent given the hyperprior. If this is not the
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Fig. 5: Combined with channel-conditioning, latent residual
prediction (LRP) helps significantly at lower bit rates but re-
duces performance slightly at the highest bit rates.

case, it means there is redundant information, which will in-
crease entropy without reducing distortion.

Empirically, we see significant improvements using both
CC and LRP, which implies that existing models are far from
ideal. Further research is needed to understand why the mod-
els are failing to reach an optimal state, but we can theorize
that the relatively simple 4-layer convolutional networks that
make up the analysis and synthesis transforms lack the ca-
pacity to generate/decode a latent representation with con-
ditionally independent channels. Alternatively, the networks
may have the necessary capacity, but our learning procedure,
which uses the Adam optimizer []315[], is unable to find a suit-
able minimum despite training for five million steps.

By combining channel-conditioning, latent residual pre-
diction, and round-based training, we have developed a neu-
ral image compression architecture that outperforms a cor-
responding context-adaptive model while minimizing serial
processing. In future research, we plan to investigate combin-
ing channel-conditioning with spatial context modeling to see
if the two approaches are complementary.
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Fig. 6: Each curve shows the average rate savings on the Ko-
dak image set when training part of the model with rounded
values vs. using uniform noise everywhere (see Section ] for
details). At low and moderate bit rates, there is a significant
benefit to round-based training.
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