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ABSTRACT
In learning-based image compression, we develop image
codecs by optimizing a computational model to minimize
a rate-distortion objective. Currently, the most effective
learned image codecs take the form of an entropy-constrained
autoencoder with an entropy model that uses both forward
and backward adaptation. Forward adaptation makes use
of side information and can be efficiently integrated into a
deep neural network. Backward adaptation, however, typi-
cally makes predictions based on the causal context of each
symbol, which requires serial processing that prevents effi-
cient GPU/TPU utilization. We introduce two enhancements,
channel-conditioning and latent residual prediction, that lead
to network architectures with better rate-distortion perfor-
mance than existing context-adaptive models while minimiz-
ing serial processing. Specifically, we see an average rate
savings of 6.7% on Kodak and 11.4% on the Tecnick image
set compared to a context-adaptive baseline model. At low
bit rates, where the improvements are most effective, our
model saves up to 18% over the baseline and outperforms
hand-engineered codecs like BPG by up to 25%.

Index Terms— Image Compression, Neural Networks,
Adaptive Entropy Modeling

1. INTRODUCTION

In learned image compression, we construct image codecs
by optimizing the parameters of a computational model to
minimize a rate-distortion objective. Most recent research in
learned image compression uses deep neural networks, and
a wide range of model architectures have been explored in-
cluding recurrent networks [1]–[4] and autoencoders with an
entropy-constrained bottleneck [5]–[16]. In models that use
an autoencoder, an analysis network transforms pixels into a
quantized latent representation suitable for compression by
standard entropy coding algorithms, while a synthesis net-
work is jointly optimized to transform the latent representa-
tion back into pixels.

To date, the most effective models make use of both for-
ward and backward-adaptive components to improve the pre-
dictive ability of the entropy model, which leads to higher
compression rates without increasing distortion. Forward-
adaption typically makes use of side information, for example

in the form of local histograms over the quantized latent rep-
resentation [9] or a learned hyperprior [11]. A hyperprior can
be easily integrated into an end-to-end optimized network and
allows for efficient encoding and decoding.

Backward-adaptation, on the other hand, typically incor-
porates predictions from the causal context of each symbol,
i.e. neighboring symbols above and to the left of the current
symbol as well as symbols in previous channels [10]. In such
context-adaptive models, encoding can still be performed ef-
ficiently using masked convolution, which will run in parallel
across the entire latent tensor on a GPU or TPU [17]. Decod-
ing, however, is inherently serial, and thus does not effectively
utilize massively parallel hardware.

Our goal is to develop an image compression architecture
capable of matching the rate-distortion (RD) performance of
a context-adaptive model while minimizing serial processing
that can lead to slow decoding times. Toward this goal, we ex-
plore two architectural enhancements: channel-conditioning
(CC) and latent residual prediction (LRP). In addition, we
show how training synthesis transforms with rounded latent
values interacts positively with CC and LRP to further boost
RD performance.

The combined effect of these improvements is a highly
parallelizable architecture that outperforms recently proposed
context-adaptive models [12]–[14] by 6.7% on Kodak and
11.4% on the Tecnick image set. We see even larger gains
compared to standard codecs and learning-based models that
do not use context (see Figures 2 and 3). The coding im-
provements provided by CC and LRP are most effective at
low bit rates where our model saves more than 16% compared
to the context-adaptive baseline and as much as 25% relative
to BPG [18]. The following sections describe CC, LRP, and
round-based training. A detailed analysis of the empirical re-
sults is presented in Sections 5 and 6.

2. CHANNEL-CONDITIONAL ENTROPY MODELS

Our model builds on the hyperprior architecture introduced
in [11] and extended in [12]–[14]. These models learn to
generate an image-dependent hyper-latent tensor that is com-
pressed and transmitted as side information. They also learn
to transform this tensor into the entropy parameters used to
compress the symbols that represents the input image (see the
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Fig. 1: This data-flow diagram shows the architecture of our compression model with latent residual prediction (LRP) and two
slices for channel-conditioning (CC). Tan items represent data tensors, blue represents transforms composed of convolutional
layers, green is for basic operations, and red represents entropy coding. In our model, an input image (x) is transformed and
quantized before the latent representation (y) is split along the channel dimension. The first slice (y1) is compressed using a
Gaussian entropy model conditioned solely on the hyperprior (green arrows from the latent representation for the scale (σ′) and
and mean (µ′)), while the entropy model for the second slice (y2) is conditioned on both the hyperprior (green arrows) and the
decoded symbols in the first slice (blue arrows from ŷ1). After range coding (enc and dec blocks), quantization error in the
decoded symbols is reduced by adding the predicted residual (LRP1 and LRP2), which is conditioned on the hyperprior via µ′.
Finally, the decoded slices are concatenated (ŷ) and transformed into the final reconstructed image (x̂).

Hyperprior block at the right of Figure 1). Hyperprior mod-
els typically use a conditional Gaussian model parameterized
by scale [11] or both scale and mean, and the most effective
models mix information in the hyperprior with contextual in-
formation before predicting the µ and σ parameters, i.e. they
use both forward and backward adaptation to model the latent
representation of each image [12]–[14].

Conditioning on the causal context allows for better mod-
eling of spatial correlation and is commonly used in standard
image codecs [18]–[20] and for intra-frame prediction in
video codecs [21]–[23]. In a learning-based codec, the model
must estimate the parameters of a spatially autoregressive
(AR) model. This approach is effective but requires running
the AR model sequentially as each symbol is decoded, which
can slow down decoding times on GPUs / TPUs compared
to architectures that better utilize the massively parallel hard-
ware. For this reason, we explore channel-conditional (CC)
models, which split the latent tensor along the channel di-
mension and conditions the entropy parameters for each slice
on previously decoded slices. Figure 1 provides a high-level
overview of this architecture, where the blue arrows show
how y2 (the second slice) is conditioned on ŷ1 (the first slice).
In a model with more splits, the third slice (y3) would be
conditioned on the hyperprior along with both ŷ1 and ŷ2.

We can interpret CC models as autoregressive along the
channel dimension rather than the spatial dimensions. Al-
though this structure also introduces some serial processing
(slice yi can only be decoded after slices [y1 . . . yi−1]), we
typically use relatively few slices due to diminishing bene-
fits to RD performance (see Figure 4). Note that in a model
with N slices, each slice contains W × H × C

N values that
can be processed in parallel (where W , H , and C correspond
to the width, height and number of channels, respectively).

Contrast with a spatially autoregressive model where a naive
implementation requires W × H sequential steps with only
C values computed during each run. A more careful imple-
mentation using wavefront processing adds some paralleliza-
tion [24] but still far less than CC.

3. LATENT RESIDUAL PREDICTION

Autoencoder-based models learn to transform pixel values
(x) into real-valued latents (y) that are quantized before they
are losslessly compressed. This process inevitably leads to a
residual error (r = y − Q[y]) in the latent space that mani-
fests as extra distortion when Q[y] is transformed back into
the pixel domain (x̂).

Latent residual prediction attempts to reduce this quanti-
zation error by predicting the residual based on the hyperprior
and any previously decoded slices. The predicted residual
is added to the quantized latents slice-by-slice, which allows
LRP to improve results both by decreasing distortion and by
decreasing entropy since the entropy parameters used to code
later slices are conditioned on previous ones that include LRP.

Previous approaches for augmenting the input to the
synthesis transform either re-used the mean prediction di-
rectly [15] or used dilated convolution to provide additional
features based on a larger receptive field [16]. In both cases,
however, the extra features were concatenated with the la-
tent tensor, which increases computation, and neither used
channel-conditioning, which means that potential improve-
ments could only affect distortion.

4. TRAINING WITH ROUNDED LATENT VALUES

All compression models trained using gradient-based opti-
mization are hindered by quantization, which yields gradients
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Fig. 2: Models using channel-conditioning and latent residual
prediction outperform both the learning-based baselines and
standard codecs.

that are either zero or infinite for all values. Typically, re-
searchers avoid this problem by either training with uniform
noise, which simulates “noisy quantization” without destroy-
ing the gradient [6], [11]–[14], [25], [26], or they use straight-
through gradients where rounding is applied but the true gra-
dient function is replaced with the identity function [5].

Although space constraints preclude a full report on the
effects of different training methods, we did find that a mixed
approach improves RD performance. Our baseline mod-
els replace quantization with uniform noise during training:
Q[y]

.
= y + U(− 1

2 ,
1
2 ). The mixed approach uses the same

uniform noise for learning entropy models but replaces the
noisy tensor with a rounded one whenever the quantized
tensor is passed to a synthesis transform. Looking at Fig-
ure 1, the difference is essentially whether the quantized
tensor is flowing to the right (add noise) or left (round with
straight-through gradients). We experimented with using
the rounding-based method everywhere, but this approach
performed worse than the noise-based baseline.

5. EXPERIMENTAL RESULTS

In this section, we evaluate the effects of using CC, LRP, and
round-based training in a learned image codec. Figure 2 com-
pares RD curves averaged over the Kodak image set [27].
The graph shows that our full model (10 CC slices + LRP +
round-based training) outperforms all of the standard codecs
(BPG, JPEG2000, WebP, and JPEG) as well as learning-based
codecs that combine spatial context with a hyperprior [13],
[14]. To preserve clarity, earlier learning-based methods, in-
cluding [2]–[12], are not shown in Figure 2, but all of these
methods have worse RD performance than both BPG and our
CC + LRP model.

Additional results are shown in Figure 3, which plots the

Fig. 3: Each curve shows the rate savings at different quality
levels relative to BPG. Our largest model (10 CC splits + LRP
+ round-based training) outperforms BPG by 10% at high bit
rates and up to 25% at low bit rates.

area between the RD curve for each model relative to the
curve for BPG. This visualization highlights how the rate sav-
ings varies with quality (and thus bit rate) in a more readable
way than a standard RD graph. Our largest model, which uses
10 CC splits, provides a significant rate savings over BPG,
ranging from 10% at higher quality levels up to 25% at the
lowest. This corresponds to an average BD rate savings of
13.9% over BPG and 6.7% over the context-adaptive base-
line [13]. The following sections analyze how each proposed
improvements contributes to the final result.

5.1. Number of CC Splits

Figure 4 shows the average rate savings as the number of
splits for channel-conditioning increases. As we split the la-
tent tensor into more slices, there are more opportunities to
model the dependencies between channels, which reduces en-
tropy. This benefit, however, comes at the cost of extra com-
putation, and we also see diminishing returns as the number
of splits increases. In other words, the benefit to RD per-
formance of increasing from zero to four splits is significant,
while moving from five up to ten splits yields relatively little
additional savings.

5.2. Latent Residual Prediction

Figure 5 shows the effect of LRP for different numbers of
channel-conditioning splits. Each curve compares a model
trained with LRP to an identical model without LRP by plot-
ting the area between the two RD curves.

The figure shows several effects. First, LRP has almost
no benefit for models that do not use channel-conditioning,
which we can see because the blue “CC(0 splits)” curve is
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Fig. 4: RD performance increases with additional channel-
conditional splits. The graph shows BD rate savings for mod-
els that are identical except for the number of CC splits. Note
that these models were trained without LRP to isolate the ef-
fect of channel-conditioning.

always close to zero. Second, regardless of the number of
CC splits, LRP slightly reduces RD performance at high bit
rates. However, at low bit rates, the benefit of LRP increases
with the number of CC splits and peaks around PSNR=30dB
(roughly 0.2 bpp) where the largest models save more than
6% when trained with LRP.

5.3. Rounding-based Optimization

Figure 6 shows the impact of mixed training with noise and
round-based handling of quantized tensors as described in
Section 4. The figure shows results for two CC models (zero
and five splits) and plots both variants with and without LRP.
Each curve shows the rate savings relative to an identical
model optimized using uniform-noise everywhere, which
means that the rate savings are due entirely to the change
in how quantization is handled. We see the same trend in
all cases: the benefit is minimal at higher quality levels but
becomes significant at lower bit rates. For the CC (5 splits) +
LRP model, the savings exceed 15% at the lowest bit rates.

6. DISCUSSION

From a theoretical perspective, the positive results from both
CC and LRP are somewhat surprising. Ideally, the optimiza-
tion process should expand the range of each channel to bal-
ance the rate-distortion trade-off, which means that using ad-
ditional bits in the hyperprior to drive LRP would not be help-
ful. Essentially, channels that significantly reduce distortion
would use more symbols, which can be interpreted as finer
precision, e.g. consider a channel that uses values [−1, 0, 1]
vs. one that uses [−100,−99, . . . , 99, 100] and is scaled by
1

100 in the next synthesis transform. Since the most useful
channels will already have higher effective granularity, there
is less opportunity for LRP to provide a benefit.

Similarly, the analysis transform would ideally learn to
map pixels into a latent space such that each channel is con-

Fig. 5: Combined with channel-conditioning, latent residual
prediction (LRP) helps significantly at lower bit rates but re-
duces performance slightly at the highest bit rates.

ditionally independent given the hyperprior. If this is not the
case, it means there is redundant information, which will in-
crease entropy without reducing distortion.

Empirically, we see significant improvements using both
CC and LRP, which implies that existing models are far from
ideal. Further research is needed to understand why the mod-
els are failing to reach an optimal state, but we can theorize
that the relatively simple 4-layer convolutional networks that
make up the analysis and synthesis transforms lack the ca-
pacity to generate/decode a latent representation with con-
ditionally independent channels. Alternatively, the networks
may have the necessary capacity, but our learning procedure,
which uses the Adam optimizer [28], is unable to find a suit-
able minimum despite training for five million steps.

By combining channel-conditioning, latent residual pre-
diction, and round-based training, we have developed a neu-
ral image compression architecture that outperforms a cor-
responding context-adaptive model while minimizing serial
processing. In future research, we plan to investigate combin-
ing channel-conditioning with spatial context modeling to see
if the two approaches are complementary.

Fig. 6: Each curve shows the rate savings on the Kodak image
set when training part of the model with rounded values vs.
using uniform noise everywhere (see Section 4 for details).
At low and moderate bit rates, there is a significant benefit to
rounding-based training.
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